Introduction

What is Educational Research?

Research that uses a systematic methodology to explain educational problems and issues.
Session Goals

- **Compare inductive and deductive approaches to research.**
 - Identify when to use an inductive versus an deductive approach.

- **Explain the term “causation”**
 - Describe why research designs that investigate causation are “confirmatory”.

- **Describe the common educational research designs.**
 - Discuss when it is appropriate to use the design and skills needed by the researcher to use the design.

- **For Projects Proposed by Med Ed Fellows:**
 - Identify the type of design needed and “why” the design is appropriate.
 - Identify attributes of effective curricular resources.

Approaches to Research

Deductive
- **Goal:** Identify irrefutable facts & universal truths
 - Make Predictions Based on General Principles
- Typical of Clinical/Laboratory Research

Inductive
- **Goal:** New insights from data collected/observations
 - Draw generalizations from a limited number of observations
- Common in Educational Research
How do you Know Whether to Use an Inductive or Deductive Approach?

Deductive

Inductive

Causation

Probable Cause

Independent Variables

Effect

Dependent Variables

Explained by one of the following:

- **Theory**: Connected hypotheses and variables identified by the authors. (Explains & Predicts)
- **Conceptual Framework**: Visual model described by other authors; structure from their “lens”
- **Theoretical Rationale**: Rationale proposed by other authors based on studies about relationships
- **Hunch**

Studies that evaluate “causation” are “confirmatory”
Quantitative Research Designs

- **Deductive**
 - Investigators ask a narrow, specific question, collects quantitative data, and uses statistics to analyze data.

Qualitative Research Designs

- **Inductive**
 - Investigators ask broad, general questions, rely on the views of participants, collects data consisting of “words”, and analyzes the data for “themes.”

Combined Qualitative and Quantitative Designs

- **Both**
 - Both quantitative and qualitative methods are used

Selecting An Appropriate Design

1. **Is the research confirmatory?**
 - **Yes**
 - **Do you want to evaluate Causation?**
 - **Yes**
 - **Can you randomize?**
 - **Yes**
 - Use randomized experimental methods
 - **No**
 - Use quasi-experimental Methods*
 - **No**
 - Use correlational methods
 - **No**
 - Use Inductive/Qualitative methods
 - **No**
 - Example 1: Interviews; focus groups
 - Example 2: Observation
 - Example 3: Surveys – open ended questions

*Note: If you want to use a quasi-experimental method, but cannot assign subjects to a control group, use “non-experimental methods” such as case-control, cross-sectional, time series, and cohort studies.

Example 1:
- RCT
- Pre-test post-test
- Explanatory correlations

Example 2:
- Surveys
- Observation

Example 3:
- Surveys – open ended questions

5/5/2009
Is the research confirmatory?

Do you want to evaluate causation?

Can you randomize?

Yes

Use randomized experimental methods

Example: RCT

No

Use correlational methods

Example 1: explanatory correlations

Example 1:: Examples

Interviews; focus groups

No

Use Inductive/ Qualitative methods

Example 2: Observation

Example 2: Surveys

Example 3: Surveys – open ended questions

Can you randomize?

No

Use quasi-experimental Methods*

Example: Pre-test post-test

Skills Needed by the Researcher:

- Quantitative Research Methods
- Statistics

The Randomized Controlled Trial

- “The Gold Standard” if you want to evaluate “causation”
 - Confirmatory
- When to Use:
 - You have a hypothesis to test (supported by a theory, etc).
 - You can randomize subjects to treatment and control groups.
- Note: If you want to use a quasi-experimental method, but cannot assign subjects to a control group, use “non-experimental methods” such as case-control, cross-sectional, time series, and cohort studies.

Note: If you want to use a quasi-experimental method, but cannot assign subjects to a control group, use “non-experimental methods” such as case-control, cross-sectional, time series, and cohort studies.
Quasi-experimental research

- **The Most Common Design in Education**
 - RCT not possible when there are logistic issues/not practical to randomize
 - Examples:
 - Non-equivalent control groups
 - Pre-test post-test design

- **When to Use:**
 - You have a hypothesis to test (supported by a theory, etc).
 - You can *NOT* randomize subjects to treatment and control groups.

- **Skills Needed by the Researcher:**
 - Quantitative Research Methods
 - Statistics

Selecting An Appropriate Design

- **Is the research confirmatory?**
 - Yes: Use Inductive/Qualitative methods
 - No: Use correlational methods

- **Do you want to evaluate Causation?**
 - Yes: Use randomized experimental methods
 - No: Use quasi-experimental Methods*

- Example 1: RCT
- Example 2: Pre-test post-test
- Example 3: Surveys

- Example 1: explanatory correlations
- Example 2: Observation
- Example 3: Surveys – open ended questions

Note: If you want to use a quasi-experimental method, but can not assign subjects to a control group, use "non-experimental methods" such as case-control, cross-sectional, time series, and cohort studies.
Correlational Research

- **Examples:**
 - Frequently used to correlate academic success with admission criteria.
 - Does not involve an intervention

- **When to Use:**
 - You want a confirmatory approach but DO NOT want to prove causation
 - When you want to show how variables are “associated”

- **Skills Needed by the Researcher:**
 - Quantitative Research Methods
 - Statistics

Selecting An Appropriate Design

1. **Is the research confirmatory?**
 - Yes: Do you want to evaluate Causation?
 - Yes: Use randomized experimental methods
 - Example: RCT
 - No: Use quasi-experimental Methods*
 - Example: Pre-test post-test
 - No: Use correlational methods
 - Example 1: explanatory correlations
 - Example 2: Observation
 - Example 3: Surveys – open-ended questions

Note: If you want to use a quasi-experimental method, but cannot assign subjects to a control group, use non-experimental methods such as case-control, cross-sectional, time series, and cohort studies.
Survey Research

- **Use in Education:**
 - Frequently used in education; does not involve an intervention.
 - Usually hypothesizes variables

- **When to Use:**
 - When you DO NOT want to evaluate causation
 - When you want to document variables and their relationships
 - Surveys can also be “exploratory” – esp if open ended questions are used

- **Skills Needed by the Researcher:**
 - Survey Design – the survey is your “tool”; validity is essential
 - Quantitative Research Methods
 - Statistics

A Few Words about Survey Methodology

- A survey involves more than giving subjects a “questionnaire”
 - See Recommended References and seek an expert on item writing
Selecting An Appropriate Design

Is the research confirmatory?

Yes

Do you want to evaluate Causation?

Yes

Use Inductive/Qualitative methods

No

Use correlational methods

Example 1: Interviews; focus groups

Example 2: Observation

Example 1: Explanatory correlations

Example 2: Surveys

Example 3: Surveys – open ended questions

Can you randomize?

Yes

Use randomized experimental methods

Example: RCT

No

Use quasi-experimental Methods*

Example: Pre-test post-test

Note: If you want to use a quasi-experimental method, but can not assign subjects to a control group, use “non-experimental methods” such as case-control, cross-sectional, time series, and cohort studies.

Inductive Research Methods

Use in Education:
A. Interviews (focus groups, individual interviews); observation; think aloud; and simulated recall are methods used to gather information or “observations” from individuals to identify related factors.
 A. Grounded theory research
 B. Ethnographic Research
 C. Narrative Research

When to Use:
A. Little is known about the problem – “Exploratory”
B. There is a need to understand what factors or variables contribute to the problem or issue.
C. Note: These are not confirmatory

Skills Needed by the Researcher:
• Qualitative research skills: In-depth recording, analysis of words using special software & triangulation of data; Inductive thinking abilities
Inductive (Qualitative) Research Designs

- **Biography**: Explore the life of an individual
- **Phenomenology**: Understand the essence of experiences about a phenomenon (e.g., learning)
- **Grounded Theory Research**: Develop a theory grounded in data from the field
- **Ethnographic Research**: Explore the shared culture of a group of people
- **Case Study**: Develop an in-depth analysis of a single case or multiple cases

Selecting An Appropriate Design

Sometimes Both Inductive and Deductive Methods are Used in the Same Project

- **Is the research confirmatory?**
 - **Yes**: Use inductive methods
 - **No**: Use deductive methods

- **Do you want to evaluate causation?**
 - **Yes**: Use correlational methods
 - **No**: Use quasi-experimental methods

Example 1: Interviews; focus groups
Example 2: Observation
Example 3: Surveys – open-ended questions

Note: If you want to use a quasi-experimental method, but can assign subjects to a control group, use “non-experimental methods” such as case-control, cross-sectional, time series, and cohort studies.

5/5/2009
Mixed Methods

Use in Education:
- A combination of inductive and deductive methods are used such as:
 - Begin with an inductive design and then do a deductive design
 - Begin with a deductive design and then do an inductive design

When to Use:
- Methods are usually not used for evaluating “causation”
- Used when you want to identify and document variables and their relationships
- Surveys can also be “exploratory” – esp if open ended questions are used

Skills Needed by the Researcher:
- Survey Design – the survey is your “tool”; validity is essential
- Quantitative Research Methods
- Statistics

Potential Biases in Research & Evaluation
(Confounding Variables)

Study Design
- Issues related to **Internal validity**
- Issues related to **External validity**

Instrument Design
- Issues related to **Construct validity**

Data Analysis
- Issues related to **Statistical Conclusion validity**

Potential “**Threats to validity**” in Educational Research include:
- History
- Maturation
- Mortality
- Selection

Instrument Design is very important in educational research
Educational Research & IRB

- **Notes about IRB Approval:**
 - Always safer to submit – even if it will be “exempt”
 - Go the easy road…..Many institutions with a Health Science Center have an IRB office that handles medical research and another that handles “other research.”
 - At UF, submit to IRB2 if your project does not involve data that falls under HIPAA: http://irb.ufl.edu/irb02/

Advice.....

- **Envision, Plan, Implement, and Write your project so that it will be accepted by Editors.**
 - Start now…….“Do it the right way”
Reasons Why Editors Reject/Accept Manuscripts

Common reasons for rejection in RIME proceedings:

- Problem statement - 17%
- Relevance – 5%
- Research Design – 6%
- Sample and Sampling – 10%
- Instrumentation and Data Collection – 14%
- Results – 20%
- Discussion and Conclusion – 3%
- Title – 3%
- Abstract – 2%
- Writing/Presentation – 9%

Let’s Apply
Developing Curricular Resources
(Important if your Intervention involves Curricular Resources)

- Develop resources based on “How People Learn”

 - Good URL to start: http://www.vanderbilt.edu/cft/resources/teaching_resources/theory/HPL.htm

 - Other URL: http://www.newhorizons.org/neuro/neu_review_bransford.htm

 - See Instructional Design Guides at: http://ets.tlt.psu.edu/learningdesign/

Your Next Step:
Finalize Your Project Proposal
Proposal (4-5 Pages plus Appendix)

1. Title Page with Abstract (150 words)
 - Abstract should succinctly outline: specific aim (research question and hypothesis), background/significance, experimental design and methods.

2. Specific Aims

3. Background
 - Literature review that provides the background and convinces the reader that the project is important/addresses a relevant problem.

4. Preliminary work – if applicable
 - If you have already done work in this area, describe it.
 See Next Slide….

 Due – June 1

Proposal (4-5 Pages plus Appendix)

Continued from Prior Slide

5. Experimental Design/Methods
 - Research design, population & sample, power calculation – if possible, intervention, procedures, measurable outcomes, instrumentation (include validity & reliability), data collection & quality control, data analysis

6. Timeline for Proposed Activities

7. Literature Citations

8. Appendix
 - IRB approval - Documents for IRB submission

Due – June 1
Summary

- Establish a “conceptual framework” and determine whether inductive and/or deductive approaches are most appropriate.

- Select the best design given practical considerations; if using confirmatory designs, anticipate “threats to validity.”

- Instruments (eg. exams, surveys) are your “tools”….make sure they have evidence of “validity.”

- Before You Begin….Learn reasons why reviewers accept/reject educational manuscripts.
 - Essential Reading: Academic Medicine 2001 Issue

Educational Research References

1. **Core Reference:**

2. **More In-depth References:**
3. Survey Research:

4. What Editors Look for:
 A. Review Academic Medicine, September 2001 Issue (free access):

5. Development of a Conceptual Framework is “key to success”: